网上有关“一元一次方程预习计划该怎么写”话题很是火热,小编也是针对一元一次方程预习计划该怎么写寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
一、课题 §5.1一元一次方程(2)
二、教学目标
1.使学生掌握移项的概念,并能利用移项解简单的一元一次方程;
2.培养学生观察、分析、概括和转化的能力,提高他们的运算能力.
三、教学重点和难点
重点:移项解一元一次方程.
难点:移项的概念
四、教学手段
引导——活动——讨论
第 1 页
五、教学方法
启发式教学
六、教学过程
(一)、从学生原有的认知结构提出问题
1.等式的性质是什么?
2.什么叫一元一次方程?方程ax=b(a≠0)的解是什么?
3.(投影)解方程:
(让学生口答本题,发动其余学生及时纠正出现的错误,做到一题多用)
我们已经学习了解最简单的一元一次方
第 2 页
程ax=b(a≠0),今天学习把某些简单的一元一次方程化为最简的一元一次方程,从而求得其解.(教师板书课题:一元一次方程的解法(二)
(二)、师生共同研究解简单的一元一次方程的方法
例1 解方程3x-5=4.
在分析本题时,教师应向学生提出如下问题:
1.怎样才能将此方程化为ax=b的形式?
2.上述变形的根据是什么?
第 3 页
(以上过程,如学生回答有困难,教师应作适当引导)
解:3x-5=4,
方程两边都加上5,得
3x-5+5=4+5,
即 3x=4+5,
3x=9,
x=3.
(本题的解答过程应找多名学生分别口述,教师严格、规范板书,并请学生口算检验)
例2 解方程7x=5x-4.
第 4 页
(此题的分析与解答过程的教学设计可仿照例1重复进行)
针对例1,例2的分析与解答,教师可提出以下几个问题:
3.将方程3x-5=4,变形为3x=4+5这一过程中,什么变化了?怎样变化的?
4.将方程7x=5x-4,变形为7x-5x=-4这一过程中,什么变化了?怎样变化的?
(-5变为+5,并由方程的左边移到方程的右边;5x变为-5x,并由方程的右边移到方程的左边)
我们将方程中某一项改变符号后,从方程的一边移到另一边,这种变形叫做移
第 5 页
项.利用移项,我们可以将例2按以下步骤来书写.
解:7x=5x-4,
移项,得7x-5x=-4,
合并同类项,得2x=-4,
未知数x的系数化1,得x=-2.
至此,应让学生总结出解诸如例1、例2这样的一元一次方程的步骤,并强调移项要变号.
(三)、课堂练习(用投影给出)
解方程:(这个练习,应找部分学生板演,其余学生在下面自行完成,其间,
第 6 页
教师要巡视,发现问题及时纠正,并鼓励同学间互相讲评,同时,教师还应要求学生严格参照例2的解题格式完成这个练习,并要求口算检根)
(四)、师生共同小结
首先,采取师生一问一答的形式回顾本节课学习了哪些内容?采用了什么样的思维方法?在解题时需要注意什么?
然后,教师需指出,采用了将“未知”转化为“已知”的思维方法,这是一种非常重要的思维方法,它在后继课的学习起着非常重要的作用.同时再次强调移项要变号.
第 7 页
最后,教师可引申,若所给方程中的某一项或某几项有括号,我们应如何求出方程的解?(为下节课埋下伏笔,引出悬念,从而激发学生的学习兴趣)
七、练习设计
解下列方程:
思考题
解关于x的方程:
(1)ax=bx; (2)(a2+1)x=(a2-1)x.
八、板书设计
§5.1一元一次方程(2)
(一)知识回顾 (三)例题解析 (五)课堂小结
例1、例2
(二)观察发现 (四)课堂练习 练习设计
第 8 页
九、教学后记
关于一元一次方程解法的授课内容,本教学过程设计在内容编排上与人教版教材在编排上稍有不同,主要是基于以下两点原因:
1.先指出解最简的一元一次方程,在此基础上再逐步提出解较复杂的一元一次方程,把解较复杂的一元一次方程的过程化归成解最简单的一元一次方程的过程,这样提出问题和寻求解题方法比较自然;
2.学生在解一元一次方程时的很多错误,追其根源都是方程ax=b程的求根公式.所以,应先集中讲解一下如何准确
第 9 页
、快速的解最简单的一元一次方程.显然它对学生来说并不困难,但仍要求学生进一步重视它,努力把它用准、用熟.
第六十课时
一、课题 §5.1一元一次方程(3)
二、教学目标
1.使学生掌握解一元一次方程的移项规律,并且掌握带有括号的一元一次方程的解法;
2.培养学生观察、分析、转化的能力,同时提高他们的运算能力.
三、教学重点和难点
第 10 页
重点:带有括号的一元一次方程的解法.
难点:解一元一次方程的移项规律.
四、教学手段
引导——活动——讨论
五、教学方法
启发式教学
六、教学过程
(一)、从学生原有的认知结构提出问题
1.解方程ax=b(a≠0),并指出解法根据.
第 11 页
2.什么叫做移项?移项的根据是什么?移项时应当注意什么?
3.(投影)解下列方程:
本节课我们继续学习移项应注意的问题和含有括号的一元一次方程的解法.
(二)、师生共同研究讨论解一元一次方程的移项规律
例1 解方程5x+2=7x-8.
在分析本题时,教师向学生提出如下问题:
1.利用什么方法可将所给方程化为ax=b的形式?
第 12 页
2.怎样移项呢?
根据学生回答的情况,得到的下面两种解法.
解法1 5x+2=7x-8,
移项,得5x-7x=-8-2,
合并同类项,得
-2x=-10
系数化1,得
x=5.
解法2 移项,得
2+8=7x-5x,
第 13 页
合并同类项,得
10=2x,
系数化1,得
x=5.
最后,请学生口算验根.
结合本例题的解法1和解法2,启发学生总结出求解像上述例题这样的一元一次方程时,它的移项规律是什么.(一般地,把含有未知数的项移到一边,不含未知数的项移到另一边)
(若学生回答有困难,教师应做适当引导)
第 14 页
然后,教师应指出,习惯上多把含有未知数的项移到左边,有时为了简单也可以移到左边.
(三)、师生共同探讨得出带有括号的一元一次方程的解法
例2 解方程2(x-2)-3(4x-1)=9(1-x).
解:(怎样才能将所给方程转化为例1所示方程的形式呢?请学生回答)
去括号,得2x-4-12x+3=9-9x,
移项,得2x-12x+9x=9+4-3,
合并同类项,得-x=10,
系数化1,得x=-10.
第 15 页
(本题解答过程应首先由学生口述,教师板书,然后,请学生检验-10是否为原方程的根)
此时,启发学生总结遇有带括号的一元一次方程的解法.(方程里含有括号时,移项前,要先去括号)
(四)、课堂练习(投影)
1.下列方程的解法对不对?若不对怎样改正?
解方程2(x+3)-5(1-x)=3(x-1)
解:2x+3-5-5x=3x-1,
2x-5x-3x=3+5-3,
-
第 16 页
6x=-1,
2.解方程:
(1)2x+5=25-8x; (2)8x-2=7x-2; (3)2x+3=11-6x;
(4)3x-4+2x=4x-3; (5)10y+7=12-5-3y; (6)2.4x-9.8=1.4x-9.
3.解方程:
(1)3(y+4)12; (2)2-(1-z)=-2;
(3)2(3y-4)+7(4-y)=4y; (4)4x-3(20-x)=6x-7(9-x);
(5)3(2y+1)=2(1+y)+3(y+3).
第 17 页
(五)、师生共同小结
师生采用一问一答的形式,一起总结本节课都学习哪些内容?哪些思想方法?应注意什么?
在此基础上,教师应着重指出①在运用移项规律解题时,一般情况下,应把含有未知数的项移到等号的左边,但有时依具体情况,也可灵活处理;②将“复杂”问题转化为“简单”问题,将“未知”问题转化为“已知”问题,将“陌生”问题转化为“熟悉”问题,这种思考问题的方法是一种非常重要的数学思考方法.本节课的例题、练习题的解答就充分地体现这一点.
第 18 页
七、练习设计
解下列方程:
1.8x-4=6x-20x-6+3; 2.3x-26+6x-9=12x+50-7x-5;
3.4(2y+3)=8(1-y)-5(y-2); 4.15-(7-5x)=2x+(5-3x);
5.12-3(9-y)=5(y-4)-7(7-y); 6.16(1-2x)-4(11-2x)=7(2-6x);
7.3x-4(2x+5)=7(x-5)+4(2x+1); 8.2(7y-2)+10y=5(4y+3)+3y.
思考题
解下列方程:
第 19 页
1.2|x|-1=3-|x|;2.2|x+1|=|x+1|.
八、板书设计
§5.1一元一次方程(3)
(一)知识回顾 (三)例题解析 (五)课堂小结
例1、例2
(二)观察发现 (四)课堂练习 练习设计
九、教学后记
关于一元一次方程解法的授课内容,本教学过程设计在内容编排上与人教版教材在编排上稍有不同,主要是基于以下两点原因:
第 20 页
1.先指出解最简的一元一次方程,在此基础上再逐步提出解较复杂的一元一次方程,把解较复杂的一元一次方程的过程化归成解最简单的一元一次方程的过程,这样提出问题和寻求解题方法比较自然;
2.学生在解一元一次方程时的很多错误,追其根源都是方程ax=b程的求根公式.所以,应先集中讲解一下如何准确、快速的解最简单的一元一次方程.显然它对学生来说并不困难,但仍要求学生进一步重视它,努力把它用准、用熟.
第六十一课时
第 21 页
一、课题 §5.1一元一次方程(4)
二、教学目标
1.使学生掌握含有以常数为分母的一元一次方程的解法;
2.培养学生观察、分析、归纳及概括的能力,加强他们的运算能力.
三、教学重点和难点
重点:含有以常数为分母的一元一次方程的解法.
难点:正确地去分母.
四、教学手段
引导——活动——讨论
第 22 页
五、教学方法
启发式教学
六、教学过程
(一)、从学生原有的认知结构提出问题
1.什么叫移项?解一元一次方程的移项规律是什么?
2.(投影)解下列方程:(请学生口答)
3.求几个数的最小公倍数的方法是什么?
第 23 页
百度文库
搜索
一元一次方程预习计划该怎么写
一元一次方程的步骤
3.8?0.5+0.5x=3.4?
1. ?1.9 + 0.5x = 3.4
2. ?x1.9
0.5x = 3.4 - 1.9
3. ?0.5x = 1.5
4.x =?1.5?0.5
x = 3
3.8?0.5+0.5x=3.4x=3?3.8?0.5+0.5?=3.4
1.9+0.5?=3.4
0.5?=3.4-1.9
0.5?=1.5
=1.5?0.5 =31. ?a?b = b?a?
2. ?(a+b)+c = a+(b+c)?3.8?0.5?0.5x?
3. 1.90.5x=1.5?
4.?
一元一次方程的步骤如下:
1、比如说,最简单的类型无括号、无分母类型,这一类题目类似小学基础题,是最基本也是最简单的题型。解题步骤:移项,未知数移到等号的左边,数字移到等号的右边,移项之前先变符号。
2、合并同类项(俗称找朋友)。
3、化未知数系数为1,注意两边同时乘除同一个数以及符号是否需要变化。
一元一次方程(linear equation with one unknown)指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。标准形式:ax+b=0或ax=b(a≠0)。
一元一次方程只有一个根。一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题。
一元一次方程最早见于约公元前1600年的古埃及时期。公元820年左右,数学家花拉子米在《对消与还原》一书中提出了“合并同类项”、“移项”的一元一次方程思想。
16世纪,数学家韦达创立符号代数之后,提出了方程的移项与同除命题。1859年,数学家李善兰正式将这类等式译为一元一次方程。
关于“一元一次方程预习计划该怎么写”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
本文来自作者[寒蕾]投稿,不代表邵阳号立场,如若转载,请注明出处:https://www.syzq0739.com/saoyan/1227.html
评论列表(3条)
我是邵阳号的签约作者“寒蕾”
本文概览:网上有关“一元一次方程预习计划该怎么写”话题很是火热,小编也是针对一元一次方程预习计划该怎么写寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助...
文章不错《一元一次方程预习计划该怎么写》内容很有帮助